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Introduction

The enantioselective addition® of functionalized dior-
ganozincs? to aldehydes catalyzed by (1R,2R)-bis(trifluo-
romethanesulfonamido)cyclohexane® 1 and titanium(1V)
alkoxides constitutes an excellent method for the prepa-
ration of polyfunctional secondary alcohols.* A broad
range of aldehydes and functionalized diorganozincs (FG-
R),Zn can be used in this reaction, but an excess of
diorganozinc (2—3 equiv, corresponding to 4—6 equiv of
the FG-R group) is required in order to obtain high
chemical yields and high enantioselectivities.* Recently,
we have found that mixed diorganozincs of the type FG-
R-ZnCH,SiMe; (2) can be readily prepared and charac-
terized by NMR spectroscopic methods.® The Me3;SiCH,
group behaves as a nontransferable ligand®’ and pre-
liminary results have shown that these new mixed zinc
reagents are useful for Michael-additions to enones in
NMP.58

Results and Discussion

Herein, we wish to report that various mixed diorga-
nozincs of type 2 can be added to aldehydes with high
enantioselectivity without using a large excess of the
transferable FG-R group. Thus, the mixing of a diorga-
nozinc (FG-R),Zn (3) (0.8—1.2 equiv), prepared either by
a boron—zinc exchange or an iodine—zinc exchange,?* and
bis[(trimethylsilyl)methyl]zinc (4)° (0.9—1.3 equiv) led to
the formation of the mixed diorganozinc reagent FG-R-
ZnCH,SiMe; (2). Usually, with nonfunctionalized di-
alkylzincs only 0.8 equiv was used, whereas with the less
reactive functionalized dialkylzincs, 1.2 equiv is required.
NMR-experiments show that less than 20% of (FG-R),Zn
3 remains at the equilibrium which is set up within a
few minutes at rt.> The mixed diorganozincs 2 are less
reactive than the zinc species 3, decreasing significantly
the addition rate to the aldehyde. The nonasymmetric

T Dedicated to Professor Dieter Seebach on the occasion of his 60th
birthday.
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catalysis induced by the addition of Ti(Oi-Pr), becomes
more important. Thus, the addition of Pent(TMSM)Zn
to benzaldehyde gives a moderate enantioselectivity (48%
ee) in the presence of a large amount of Ti(Oi-Pr), (2.0
equiv). An improvement is obtained by reducing the
guantity of Ti(Oi-Pr), to 1.6 equiv (88% ee) and further
to 1.2 equiv (95% ee). In the general case, optimum
enantioselectivities are obtained with 0.6 equiv of Ti(Oi-
Pr), and 8 mol % of the chiral catalyst 1 (Scheme 1). The
additions to aldehydes 5 are complete in ether at —20
°C after a reaction time of 14—26 h, and the alcohols 6
are obtained in 74—98% yield and 86—98% ee (Table 1).

Aromatic aldehydes such as benzaldehyde (entries
1-6) readily undergo the asymmetric addition leading
to the benzylic alcohols 6a—f in 74—93% yield. Unsatur-
ated aldehydes such as cinnamaldehyde (entries 7 and
8) afford the corresponding allylic alcohols 6e,f with 86—
89% enantiomeric excess. Similarly, the addition to the
functionalized unsaturated aldehyde (E)-4-(triisopropyl-
siloxy)-2-butenal®® furnishes the desired selectively pro-
tected 1,4-diol 6i (entry 9) in 95% ee. Compared to the
previous procedure involving the use of an excess of the
symmetrical diorganozinc reagent 3 similar yields and
enantioselectivities are obtained (compare the yields and
% ee in parentheses in Table 1). Aliphatic aldehydes
require longer reaction times and lead to the secondary
alcohols 6j—1 in good yields but somewhat lower enan-
tiomeric excess (74—95% ee) compared to the reactions
with functionalized diorganozincs (entries 10—12).

Interestingly, highly functionalized zinc reagents can
be added to aldehydes by this method. Thus the hy-
droboration, boron—zinc exchange and addition of
(TMSM),Zn of the dienic ethyl ester 7 furnishes the
mixed zinc reagent 2. Its reaction with benzaldehyde
under typical reaction conditions (Ti(O-i-Pr), (0.6 equiv),
ether, —20 °C, 26 h) gives the chiral hydroxy ester 6m
in 81% yield and 93% ee (Scheme 2). We have also
investigated the enantioselective transfer of the methyl
group* and have prepared the mixed reagent Me-
(TMSM)Zn. Due to the small size of the methyl group,
low enantioselectivity is usually observed with this
diorganozinc reagent. Under regular reaction conditions
(S)-phenylethanol 6n is obtained with only 23% ee by the
direct addition of Me,Zn. Replacing Ti(Oi-Pr), by the
more bulky titanium alkoxide? Ti(Ot-Bu), now affords
6n, with 87% ee. By using the mixed reagent Me-
(TMSM)Zn with Ti(Oi-Pr), comparable enantioselectivi-
ties are obtained (95% yield, 84% ee) showing that the
CH,SiMe; group is involved in the stereo-determining
step of the addition.

In summary, we have shown that mixed diorganozincs
of the type FG-R-Zn(TMSM) can be advantageously used
for the enantioselective addition to aldehydes. The
method avoids the use of a large excess of valuable
diorganozinc reagents and provides an improvement of
the enantioselectivity for the addition of small dialkylz-
incs such as Me,Zn and Et,Zn.

Experimental Section

Typical Procedure for the Enantioselective Addition of
a Mixed Dialkylzinc to an Aldehyde. A dried and argon-
flushed 50 mL Schlenk-flask was charged with (1R,2R)-1,2-bis-
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Scheme 1
(TMSM),Zn 4

(FG-R)pZn FG-RZn(TMSM)

0.9 - 1.3 equiv

3: 0.8 - 1.2 equiv 2:1.6 - 2.4 equiv

RCHO 5 (1 equiv)

Ti(O-Pr)4 (0.6 equiv) OH
2
ether, -20°C R R-FG
14-26h 6:74-98%

N(H)Tf 86-98%ee
1: 8 mol%
“N(H)TE

(trifluoromethanesulfonamido)cyclohexane (1) (61 mg, 0.16 mmol,
8 mol %), Ti(O-iPr), (0.36 mL, 1.2 mmol, 0.6 equiv), and ether
(3 mL). This catalyst solution was cooled to —20 °C. Meanwhile
the dialkylzinc 3 (1.6 mmol, 0.8 equiv) and (TMSCH,)»Zn 4 (0.43
g, 1.8 mmol, 0.9 equiv) were mixed at 25 °C in another Schlenk-
flask. In the case of a functionalized dialkylzinc 1.2 equiv of
(FG-R)2Zn and 1.3 equiv of (TMSCHy)2Zn were used. The
resulting mixed zinc reagent FG-R-(TMSCH_)Zn was slowly
added to the catalyst solution. After 10 min, the aldehyde (2.0
mmol, 1.0 equiv) was added. The reaction mixture was stirred
at —20 °C for 14—26 h and worked up as usual. The crude
product was purified by chromatography (hexanes:ether).

Analytical Data of Products of Table 1. (S)-1-Phenyl-
propanol (6a). Yield (295 mg, 92%, 98% ee) using diethylzinc
(0.22 mL, 1.6 mmol), 4 (0.43 g, 1.9 mmol), and benzaldehyde
(250 mg, 2.36 mmol). Purified by chromatrography (hexanes/
ether = 4:1). The enantiomeric excess was determined by chiral
gas chromatographic analysis; Chirasil CD; 120 °C isotherm; 100
kPa (Hy); 7.23 min minor, 7.43 min major isomer. [0]*°p = —48.4
(c 2.31, CHClg). IR (neat): 3360 (s), 2930 (s), 2870 (m), 1475
(m), 1031 (m). *H NMR (200 MHz, CDCls): ¢ 7.35 (m, 5H), 4.75
(t, J = 6.0 Hz, 1H), 2.48 (s, 1H), 1.81 (m, 2H), 0.93 (t, J = 7.2
Hz, 3H). 3C NMR (50 MHz, CDClg): ¢ 145.0, 128.8, 127.9,
126.4, 76.4, 32.2, 10.6. The obtained analytical data is compa-
rable to the literature.1314

(S)-1-Phenylhexanol (6b). Yield (401 mg, 92%, 97% ee)
using dipentylzinc (0.15 g, 1.6 mmol), 4 (0.43 g, 1.9 mmol), and
benzaldehyde (260 mg, 2.45 mmol). Purified by chromatrogra-
phy (hexanes/ether = 4:1). The enantiomeric excess was deter-
mined by chiral gas chromatographic analysis; Chirasil CD; 145
°C isotherm; 100 kPa (H,); 7.53 min major, 7.95 min minor
isomer. [0]?°> = —36.8 (¢ 3.18, CHCIs). IR (neat): 3360 (s), 2930
(s), 2870 (m), 1475 (m), 1031 (m). *H NMR (200 MHz, CDCls):
0 7.33—7.25 (m, 5H), 4.61 (t, J = 7.1 Hz, 1H), 2.19 (s, 1H), 1.79—
1.66 (m, 2H), 1.42—-1.28 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C
NMR (50 MHz, CDCls): ¢ 145.0, 128.3, 127.4, 125.9, 74.6, 39.0,
31.7, 25.4, 22.5, 13.9. The obtained analytical data is identical
with the literature.'®

(S)-5-Chloro-1-phenylpentanol (6c). Yield (336 mg, 86%,
>94% ee) using bis(4-chlorobutyl)zinc (0.54 g, 2.2 mmol), 4 (0.57
g, 2.4 mmol), and benzaldehyde (209 mg, 1.97 mmol). Purified
by chromatrography (hexanes/ether = 4:1). The enantiomeric
excess was determined by chiral HPLC analysis; Chiracel OD,
heptane/2-propanol = 95:5; flow = 0.6 mL/min; 27.05 min major,
28.42 min minor isomer. [a]?®p = —14.7 (c 2.36, benzene). IR
(neat): 3370 (s), 2940 (s), 1454 (s), 1195 (m). *H NMR (200 MHz,
CDCl3): 6 7.30—7.02 (m, 5H), 4.58 (m, 1H), 3.48 (t, J = 6.7 Hz,
2H) 2.28 (s, 1H), 1.97-1.35 (m, 6H). 3C NMR (50 MHz,
CDCl3): ¢ 144.6,129.1,127.7,126.1, 74.5, 44.9, 37.9, 33.5, 23.3.
The obtained analytical data is identical with the literature.1®

(S)-4-Hydroxy-4-phenylbutyl Pivalate (6d). Yield (379
mg, 81%, 96% ee) using bis(3-pivaloxypropyl)zinc (0.83 g, 2.2
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Notes

Table 1. Secondary Alcohols 6 Obtained by the
Catalytic Asymmetric Addition of the Mixed
Diorganozincs FG-RZNCH,TMS (2) to Aldehydes (5) in
the Presence of the Chiral Catalyst

Alcohols 6 Yield

(%)&b  %eeC
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2 (FG-R) 5 (R)

OH
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a [solated yield of analytically pure products.
bThe yields in parenthesis refer to yields
obtained using an excess of (FG-R)2Zn (2-3
equiv). ¢The enantiomeric excess in parenthesis
refer to reactions performed with (FG-R)2Zn (3)
instead of 2.

mmol), 4 (0.43 g, 1.9 mmol), and benzaldehyde (0.199 g ,1.87
mmol). Purified by chromatrography (hexanes/ether = 2:1). The
enantiomeric excess was determined by chiral HPLC analysis;
Chiracel OD, heptane/2-propanol = 90:10; flow 0.6 mL/min; 12.6
min major, 15.3 min minor isomer. [0]*°p = —20.3(c 2.87,
benzene). IR (neat): 3540 (s), 2970 (m), 2930 (s), 1720 (s), 2480
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Scheme 2
CO,Et CO,Et
1. HBEt,
2. EtZZn
_ 3.0.1 mmHg
4. TMSMoZn ZnMTMS
7 2: > 85% ( ca. 2.4 equiv)
CO,Et
PhCHO (1 equiv)
Ti(OFi-Pr)4 (0.6 equiv)
2 WOH
ether, -20°C :
26h Ph
N(H)Tf 6m: 81%
1: 8 mol% 93%ee
“N(H)TE
Scheme 3
PhCHO OH
8mol% 1, Ti(OR?),
MeZnR'! Me
ether, -20°C, 14 h
6n

R'=Me, RZ= j-Pr : 89%, 23%ee
R'=Me, R?= t-Bu : 83%, 87%ee
R' = TMSM, R2= j-Pr : 95%, 84%ee

(m). *H NMR (200 MHz, CDCls): 6 7.36—7.28 (m, 5H), 4.72—
4.70 (m, 1H), 4.10—4.06 (t, J = 6.0 Hz, 2H) 1.89—-1.31 (m, 5H),
1.20 (s, 3H). 3C NMR (50 MHz, CDClg): 6 179.1, 144.9, 128.9,
128.0, 126.2, 74.4, 64.5, 39.1, 35.7, 27.6, 25.5. The obtained
analytical data is identical with the literature.1®

(S)-5-Hydroxy-5-phenylpentyl Pivalate (6e). Yield (438
mg, 81%, 97% ee) using bis(4-pivaloxybutyl)zinc (0.61 g, 1.6
mmol), 4 (0.43 g, 1.9 mmol), and benzaldehyde (223 mg, 2.10
mmol). Purified by chromatrography (hexanes/ether = 2:1). The
enantiomeric excess was determined by chiral HPLC analysis;
Chiracel OD, heptane/2-propanol = 95:5, flow 0.6 mL/min; 23.95
min major, 26.41 min minor isomer. [o]?*®p = —25.3 (¢ 1.50,
CHCIs). IR (neat): 3440 (s), 3090 (w), 3060 (s), 2940 (m), 1880
(s), 1550 (s). *H NMR (200 MHz, CDClg): ¢ 7.35—7.27 (m, 5H),
4.65 (m, 1H), 4.03 (t, 3 = 6.5 Hz, 2H), 2.20 (br s, 1H), 1.82—-1.22
(m, 6H), 1.75 (s, 9H). 3C NMR (50 MHz, CDClg): 6 177.9, 143.9,
127.6, 126.7, 125.1, 73.6, 63.4, 37.9, 37.8, 27.7, 26.4, 21.4. MS
(El): 264 (0.6), 129 (25), 144 (26), 101 (100), 79 (25), 57 (75), 41
(25). Anal. Calcd for Ci6H2403: C, 72.69; H, 9.15. Found: C,
72.53; H 9.07.

(S)-6-Hydroxy-6-phenylhexenyl Acetate (6f). Yield (388
mg, 74%, 90% ee) using bis(5-acetoxypentyl)zinc (0.65 g, 1.6
mmol), 4 (0.43 g, 1.9 mmol), and benzaldehyde (236 mg, 2.22
mmol). Purified by chromatrography (hexanes/ether = 2:1). The
enantiomeric excess was determined by chiral HPLC analysis;
Chiracel OD; heptane/2-propanol = 90:10; flow 0.6 mL/min;
17.50 min major, 19.42 min minor isomer. [0]%°p = —22.1 (c 1.94,
benzene). IR (neat): 3450 (s), 2940 (s), 1737 (s), 1464 (m), 1039
(m). *H NMR (300 MHz, CDClg): ¢ 7.27—7.18 (m, 5H), 4.56 (m,
1H), 3.95 (t, J = 6.7 Hz, 2H), 2.42 (s, 1H), 1.94 (s, 3H), 1.73—
1.23 (m, 8H). 13C NMR (75 MHz, CDCl3): 6 171.3, 144.9, 128.5,
127.5,125.9,74.4,64.5, 38.9, 28.6, 25.5, 25.2, 20.9. The obtained
analytical data is identical with the literature.'®

(E)-(S)-5-Phenylpent-4-en-3-ol (6g). Yield (311 mg, 95%,
89% ee) using diethylzinc (0.22 mL, 1.6 mmol), 4 (0.43 g, 1.9
mmol), and cinnamaldehyde (267 mg, 2.02 mmol). Purified by
chromatrography (hexanes/ether = 2:1). The enantiomeric
excess was determined by chiral gas chromatography analysis;
Chirasil CD; 140 °C isotherm; 100 kPa (H); 8.57 min major,
8.67 min minor isomer. [a]®> = —5.6 (¢ 3.71, CHCIl3). IR
(neat): 3360 (s), 2965 (s), 2930 (s), 1455 (m), 965 (s). *H NMR
(200 MHz, CDCl3): 6 7.24—7.09 (m, 5H), 6.40 (d, J = 16 Hz),
1H), 5.98 (dd, J = 16 Hz, J = 6.8 Hz, 1H), 4.05 ((dt, J = 6.8, J
= 0.8 Hz, 1H), 1.83 (s, 1H), 1.57-1.45 (m, 2H), 0.79 (t, I = 7.4
Hz, 3 H). 13C NMR (50 MHz, CDCl3): ¢ 137.2, 132.6, 130.9,
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129.0, 128.1, 126.9, 74.9, 34.0, 30.6, 10.2. The obtained analyti-
cal data is comparable to the literature.1317

(E)-(S)-1-Phenyloct-1-en-3-ol (6h). Yield (315 mg, 89%,
86% ee) using dipenthylzinc (0.15 g, 1.6 mmol), 4 (0.43 g, 1.9
mmol), and cinnamaldehyde (230 mg, 1.74 mmol). Purified by
chromatrography (hexanes/ether = 2:1). The enantiomeric
excess was determined by chiral HPLC analysis; Chiracel OD;
heptane/2-propanol = 90:10; flow 0.6 mL/min; 13.09 min minor,
21.23 min major isomer. [0]®p = +1.6 (c 6.3, benzene). IR
(neat): 3400 (s), 2920 (s), 2860 (s), 1700 (m). *H NMR (200 MHz,
CDCl3): 6 7.27—7.11 (m, 5H), 6.43 (d, J = 16 Hz, 1H), 6.09 (dd,
J =16.0 Hz, 6.8 Hz, 1H), 4.20—4.05 (m, 1H), 2.24 (s, 1H), 1.54—
1.44 (m, 2H), 1.33—1.20 (m, 6H), 0.79 (t, J = 6.3 Hz, 3H) . 13C
NMR (50 MHz, CDCls): 6 137.1,132.9, 130.7, 128.9, 128.0, 126.9,
73.6, 37.7, 32.2, 25.6, 23.0, 14.5. The analytical data obtained
is identical with the literature.'8

(E)-(S)-1-[(Triisopropylsilyl)oxy]hex-2-en-4-ol (6i). Yield
(244 mg, 95%, 95% ee) using diethylzinc (0.15 g, 1.6 mmol), 4
(0.43 g, 1.9 mmol), and 3-(triisopropylsiloxy)propanal (274 mg,
1.03 mmol). Purified by chromatrography (hexanes/ether = 4:1).
The enantiomeric excess was determined by chiral gas chro-
matographic analysis; Chirasil CD; 120 °C isotherm; 100 kPa
(H2); 21.40 min minor, 21.65 min major isomer. [a]®p = +2.3
(c 4.01, CHCls). IR (neat): 3370 (s), 2940 (s), 2870 (s), 1460 (s),
1130 (s), 1010 (m). *H NMR (200 MHz, CDCls): 6 5.73 (m, 2H),
4.23 (m, 2GH), 4.08—3.98 (m, 1H), 3.87 (m, 1H), 1.80 (s, 1H),
1.63 (s, 1H), 1.58—-1.48 (m, 21H), 0.86 (t, J = 7.3 Hz, 3H). 13C
NMR (50 MHz, CDCl3): ¢ 131.31, 129.6, 73.0, 62.4, 29.23, 16.8,
10.6, 8.8. MS (El): 272 (0.5), 254 (1), 229 (36), 131 (94), 103
(100), 89 (20), 75 (88), 61 (55). Anal. Calcd for C15H3,0,Si: C,
66.11; H, 11.84. Found: C, 66.06; H 11.81.

(S)-1-Phenylpentan-3-ol (6j). Yield (293 mg, 87%, >95%
ee) using diethylzinc (0.15 g, 1.6 mmol), 4 (0.43 g, 1.9 mmol),
and hydrocinnamaldehyde (277 mg, 2.06 mmol). Purified by
chromatrography (hexanes/ether = 2:1). The enantiomeric
excess was determined by chiral gas chromatographic analysis;
Chirasil CD; 120 °C isotherm; 100 kPa (H-); 14.70 min major,
15.12 min minor isomer. [o]®p = +24.1 (c 1.08, EtOH). IR
(neat): 3360 (s), 2930 (s), 2870 (m), 1475 (m). *H NMR (200
MHz, CDCls3): 9 7.33—7.20 (m, 5H), 3.58 (m, 1H), 2.86—2.66 (m,
2H), 2.32 (s, 1H), 1.84—1.76 (m, 2H), 1.59—1.24 (m, 2H), 1.00 (t,
J = 7.4 Hz, 3H). 13C NMR (50 MHz, CDClg): ¢ 142.5, 128.6,
128.5,125.9, 72.8, 38.7, 33.8, 30.4, 10.0. The obtained analytical
data is comparable to the literature.317

(S)-7-Phenyl-5-hydroxyheptyl Pivalate (6k). Yield (446
mg, 76%, 74% ee) using bis(4-pivaloxybutyl)zinc (0.83 g, 2.2
mmol), 4 (0.57 g, 2.4 mmol), and hydrocinnamaldehyde (271 mg,
2.01 mmol). Purified by chromatrography (hexanes/ether = 4:1).
The enantiomeric excess was determined by chiral HPLC
analysis; Chiracel OD; heptane/2-propanol = 95:5; flow 0.6 mL/
min; 17.57 min minor, 19.14 min major isomer. [0]%p = +10.7
(c 1.59, CHCI3). IR (neat): 3680 (s), 3030 (w), 2940 (s), 1880
(s), 1540 (s), 1230 (s). *H NMR (300 MHz, CDClg): ¢ 7.28—7.10
(m, 5H), 4.05 (t, J = 6.6 Hz, 2H), 3.59 (m, 1H), 2.78—2.64 (m,
4H), 1.77-1.48 (m, 7H), 1.45 (s, 9H). ¥C NMR (75 MHz,
CDCl3): 6178.6,142.0,128.9, 126.0, 71.1, 64.2, 39.1, 38.7, 37.0,
32.3, 27.2, 22,0. MS (EIl): 103 (43), 85 (16), 57 (100), 41 (23).
Anal. Calcd for C1gH2503: C, 73.93; H, 9.65. Found: C, 73.84;
H 9.53.

(S)-8-Phenyl-6-hydroxyoctyl Pivalate (61). Yield (475 mg,
79%, 82% ee) using bis(5-pivaloxypentyl)zinc (0.89 g, 2.2 mmol),
4 (0.57 g, 2.4 mmol), and hydrocinnamaldehyde (263 mg, 1.96
mmol). Purified by chromatrography (hexanes/ether = 4:1). The
enantiomeric excess was determined by chiral HPLC analysis;
Chiracel OD; heptane/2-propanol = 90:10; flow 0.6 mL/min;
14.04 min minor, 22.24 min major isomer. [a]*°p = +41.8 (c 0.98,
CHCI3). IR (neat): 3680 (s), 3030 (w), 2940 (s), 1880 (s), 1540
(s), 1230 (s). H NMR (300 MHz, CDCly): 6 7.28—7.10 (m, 5H),
4.02 (t, J = 6.6 Hz, 2H), 3.60 (m, 1H), 2.79—2.63 (m, 4H), 1.78—
1.34 (m, 9H), 1.30 (s, 9H). 13C NMR (75 MHz, CDCl3): 6 178.5,
142.0, 128.6, 125.7, 71.1, 64.2, 39.0, 38.6, 37.3, 31.9, 28.5, 27.1,
25.9, 25.1. MS (EIl): 288 (5), 186 (12), 117 (20), 104 (64), 91

(17) Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc.
1987, 109, 7111-7115.

(18) Vettel, S.; Lutz, C.; Diefenbach, A.; Haderlein, G.; Hammer-
schmidt, S.; Kuhling, K.; Mofid, M.-R.; Zimmermann, T.; Knochel, P.
Tetrahedron Asymmetry 1997, 8, 779—800.
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(62), 57 (100). Anal. Calcd for CigH3003: C, 74.47; H, 9.87.
Found: C, 74.38; H 9.69.

Analytical Data of Products 6m and 6n. (S)-Ethyl
7-Phenyl-7-hydroxy-2-methyleneheptanoate (6m). Yield
(428 mg, 81%, 93% ee) using 6m (0.15 g, 1.6 mmol), 4 (0.43 g,
1.9 mmol), and benzaldehyde (214 mg, 2.02 mmol). Purified by
chromatrography (hexanes/ether = 4:1). The enantiomeric
excess was determined by chiral HPLC analysis; Chiracel OD,
heptane/2-propanol = 95:5; flow 0.6 mL/min; 12.83 min major,
13.74 min minor isomer. [0]®*p = —9.7 (¢ 1.68, CHCI3). IR
(neat): 3480 (s), 2940 (vs), 1720 (vs), 1630 (m). *H NMR (300
MHz, CDCls): 6 7.34—7.21 (m, 5H), 6.08 (m, 1H), 5.46 (m, 1H),
4.60 (m, 1H), 4.15 (g, J = 8.0 Hz, 2H), 2.28 (t, J = 7.1 Hz, 2H),
1.96 (s, 1H), 1.84—1.42 (m, 6H), 1.26 (t, J = 7.1 Hz, 3H). 13C
NMR (75 MHz, CDCl3): 6 167.2,144.8, 140.8, 128.4, 127.4, 125.8,
124.2,74.4, 60.4, 38.8, 31.6, 28.2, 25.3, 14.1. MS (El): 244 (7),
156 (100), 115 (43), 91 (40), 79 (54). Anal. Calcd for: C, 73.24;
H, 8.45. Found: C, 73.01; H 8.61.

(S)-1-Phenylethanol (6n). Yield (262 mg, 95%, 84% ee)
using dimethylzinc (0.15 g, 1.6 mmol), 4 (0.43 g, 1.9 mmol), and
benzaldehyde (240 mg, 2.3 mmol). Purified by chromatrography
(hexanes/ether = 4:1). The enantiomeric excess was determined
by chiral gas chromatographic analysis; Chirasil CD; 120 °C
isotherm; 100 kPa (Hy); 4.32 min major, 4.75 min minor isomer.
[0]?®p = —35.2 (c 1.97, CHCI3). IR (neat): 3360 (s), 2930 (s),
2870 (m), 1475 (m), 1031 (m). H NMR (200 MHz, CDCls): ¢
7.30—7.32 (m, 5H), 4.78 (9, J = 8.0 Hz, 1H), 2.39 (s, 1H), 1.43

Notes

(d, 3=15.6 Hz, 3H). 8C NMR (50 MHz, CDCl3): 6 146.2, 128.9,
127.8,125.8, 70.8, 25.6. The obtained analytical data is identical
with the literature.19:20
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